
Cody Dunne
Northeastern University

JS DEVELOPMENT, PROJECTS

Feel free to interrupt with
questions!

2

CHECKING IN

3

Plan for Today

•Learn about JavaScript and how to use it
•Discuss our expectations for projects

JAVASCRIPT DEVELOPMENT

5Slides and inspiration from Sara Di Bartolomeo

JavaScript is

JavaScript is good

• You can change the appearance and behavior of everything that
you see in a webpage

• Extremely easy to make other people access your work

• You can write good code if you know how

index.html Browser open on
127.0.0.1:8000

Running your code → loading page in the browser

python3 -m http.server
(or py, python… whatever
your python 3 is called)

Starting a Project

index.html python3 -m http.server Browser open on
127.0.0.1:8000

You can open index.html
directly from the
browser without having
a server running, but
you will encounter
problems with CORS

Run this in the root folder
of your project

Starting a Project

Image credit: South Park

index.html python3 -m http.server Browser open on
127.0.0.1:8000

You can open index.html
directly from the
browser without having
a server running, but
you will encounter
problems with CORS

Run this in the root folder
of your project

Starting a Project

Starting a Project

index.html python3 -m http.server Browser open on
127.0.0.1:8000

style.css script.js

Editor recommendations
All of them are pretty light, very customizable and ready out of the box

VS Code https://code.visualstudio.com/ (by Microsoft)
- some additional features like autocompletion are built in
- runs on electron (very customizable but heavier than necessary on resources)

Sublime https://www.sublimetext.com/
- lightweight but you can obtain everything you need through plugins
- the only one in this list that is not open source

Atom https://atom.io/ (by Github)
- runs on electron too

Brackets http://brackets.io/ (by Adobe)
- runs on electron too

Notepad++ https://notepad-plus-plus.org/
- Windows on C++

Not ready out of the box:
Vim
- only recommended if you want to spend a good chunk of time configuring it and learning new shortcuts.

https://code.visualstudio.com/
https://www.sublimetext.com/
https://atom.io/
http://brackets.io/
https://notepad-plus-plus.org/

Where do I put my script?

Where do I put my script in an HTML page?

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title>

</head>
<body>

<div>content…</div>
<div>content…</div>

</body>
</html>

http://htmlshell.com/

Ways to run a script
From another file (better)

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title> </head>

<body>
<div>content…</div>
<div>content…</div>
<script src="./main.js"></script>

</body>
</html>

- scripts at the end avoid need for dealing with
async, defer, or onload event handlers

Inline

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title>

</head>
<body>

<div>content…</div>
<div>content…</div>
<script>

… your code ...
</script>

</body>
</html>

- does NOT scale
- will make you very confused when
your code becomes longer
- only good for fast prototyping

From another file

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title>
<script src="./main.js"></script>

</head>
<body>

<div>content…</div>
<div>content…</div>

</body>
</html>

- much better, can add as many files as
you want and divide your code effectively

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title>

</head>
<body>

<div>content…</div>
<div>content…</div>

</body>
</html>

Head (document metadata)

Body (content)

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title>
<script src="./main1.js"></script>
<script src="./main2.js"></script>

</head>
<body>

<div>content…</div>
<script src="./main3.js"></script>
<div>content…</div>
<script src="./main4.js"></script>

</body>
</html>

In head:
- Executed before everything else
- Can be used to make sure that some resources are

accessible before everything else is loaded
- Can’t access DOM objects (because they have not been

created yet) unless forced to wait
- Loading of this script is blocking towards the loading of the

rest of the resources and scripts

In body:
- Executed after some content and before some other

content
- Only useful for very small, localized scripts

End of body:
- Able to access every DOM element created in body
- Executed after everything else, won’t block loading of the

body

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title>
<script src="./main1.js"></script>
<script src="./main2.js"></script>

</head>
<body>

<div>content…</div>
<script src="./main3.js"></script>
<div>content…</div>
<script src="./main4.js"></script>

</body>
</html>

Workarounds to keep in mind if you have issues with
flow control:

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>title</title>
<script src="./main1.js"></script>
<script src="./main2.js"></script>

</head>
<body>

<div>content…</div>
<script src="./main3.js"></script>
<div>content…</div>
<script src="./main4.js"></script>

</body>
</html>

Option 1:
document.addEventListener(

'DOMContentLoaded', function() {/*fun code to run*/}
)

Use this as a starting point to wait for all content to have
loaded in the DOM regardless of where you position your
script

The event DOMContentLoaded is automatically
dispatched by the browser as soon as all the resources are
loaded.

Option 2:
Build system / task runner tool set up to do flow control
(out of the scope of this class, Google if you want to know
more)

Using the browser console

Open the browser console

Ctrl+shift+k on Firefox

Ctrl+shift+j on Chrome

Or click anywhere on the page with your right click
and select “Inspect Element” then click “Console”
in the menu

Will allow you to select any element in the page and see
its properties, position in the DOM, etc.

CSS associated to
selected element

Selected
element in
the DOM

Will allow you to select any element in the page and see
its properties, position in the DOM, etc.

Will allow you to answer questions such as:
• What is the id of this element that I am seeing?
• Is this element in the correct position in the DOM?
• What events are associated to this element?
• How would this element look like if I make it red

without having to re-run the whole page?

Will allow you to select any element in the page and see
its properties, position in the DOM, etc.

Shows the structure of the page plus CSS style associated
with it

Shows print output and errors
Can run scripts after page is loaded

example:

Everything is an object
And everything can be printed in the console
If you print an object in the browser console, you can navigate the fields of the object and the functions
associated with it

Note: you can access any DOM element too as JavaScript objects

LET’S TRY IT!
[] + []
[] + {}
{} + []
{} + {}
Array(16)
Array(16).join("wat")
Array(16).join("wat" + 1)
Array(16).join("wat" - 1) + " Batman!"

31

Callbacks and events

Callbacks and events

“Event-driven architecture”: the flow of a program is defined by
events.

Events can be generated by the user or by the browser. Examples of
events that you will want to use a callback for:

- user interacts with an element
- loading of a resource is completed
- browser window is resized
- request to some API is returned

...

Callbacks and events
Most of the events that you will use are already defined by the browser.

Examples:
- mouseover: cursor enters the bounding box of a specified element
- mouseout: cursor exits the bounding box of a specified element
- onClick: user clicks on specified element
- onWindowResize: browser window is resized
- onDocumentReady: all resources in document are loaded

You can also define and dispatch your own events

Callbacks and events

Adding an event listener to an item:

item.on(‘mouseover’, function(){
console.log(‘hello’);

})

Events are usually managed using callbacks.

Callbacks are nameless functions that are executed after a condition is
verified.

a callback

Callbacks and events

Adding an event listener to an item:

item.on(‘mouseover’, function(){
console.log(‘hello’);

})

Events are usually managed using callbacks.

Callbacks are nameless functions that are executed after a condition is
verified.

a callback

item.on(‘mouseover’, () => {
console.log(‘hello’);

})

≈

Callbacks and events

Callbacks are not only for events:

myArray = [1, 2, 3, 4, 5, 6]
result = myArray.filter(function(a) => {

return a%2==0
})
// returns [2, 4, 6]

In this case, we use a callback to filter an array, keeping only even numbers

Callbacks and events

Similar to lambdas in python

JS

myArray = [1, 2, 3, 4, 5, 6]
result = myArray.filter(function(a) ⇒ {

return a%2==0
})
// returns [2, 4, 6]

Python

myArray = [1, 2, 3, 4, 5, 6]

result = list(filter(lambda a: (a%2 == 0),

myArray))

// returns [2, 4, 6]

Ways to declare a variable

- x = 5;

- var x = 5, y = 6, z = 7;

- let x = 5;

- const x = 5;

Scope of the variable is constrained to the scope in which it
has been declared.

Scope limited, x has to be constant.

Global

Recommended to generally use let

and const instead of var

Global (or error in strict mode)

if (true) {

var foo = 5;

}

console.log(foo); // 5

if (true) {

let foo = 5;

}

console.log(foo); // undefined

Always be aware of the data type that you are dealing with

https://github.com/denysdovhan/wtfjs

Ways to declare a function

name("Ted");

Function declaration

function name (params) {

...

}

Function expression

let name = function (params) {

...

}

Arrow function

let name = (params) => {

...

}

All of these will have *almost* the same effect

In arrow function: this, arguments from outer
function; no constructor; implicit return

Hoisting: a function will be positioned at the top of
the scope and made available at any point of its own
scope even before its own declaration

Arrow functions will let you write a lot of fun oneliners:

// custom sorting function
[3, 1, 2, 4].sort((a, b) => a < b)
→ [1, 2, 3, 4]

// custom filtering function
[1, 2, 3, 4].filter(a => a%2 == 0)
→ [2, 4]

// sum of all elements in an array
[1, 2, 3, 4].reduce((a, b) => a + b, 0)
→ 10

// sort then filter then sum
[3, 1, 2, 4].sort((a, b) => a < b).filter(a => a%2 == 0).reduce((a, b) => a + b, 0)
→ 6

Style guides

Google style guide: https://google.github.io/styleguide/javascriptguide.xml

Airbnb: https://github.com/airbnb/javascript

Standardjs: https://standardjs.com/#the-rules

Idiomatic: https://github.com/rwaldron/idiomatic.js

https://google.github.io/styleguide/javascriptguide.xml
https://github.com/airbnb/javascript
https://standardjs.com/#the-rules
https://github.com/rwaldron/idiomatic.js

Linting

Linters force you to write code following some pre-
established policies.

Jslint: http://www.jslint.com/

jshint: https://jshint.com/ started as a fork of jslint,

customizable

prettier: https://prettier.io/ customizable

Automated code review

one of many tools to check issues in
your code:

https://www.codacy.com/

http://www.jslint.com/
https://jshint.com/
https://prettier.io/
https://www.codacy.com/

IN-CLASS PROGRAMMING—
JAVASCRIPT

~30 min total

48

https://neu-ds-4200-s22.github.io/in-class/js

THE NESTED MODEL FOR

VISUALIZATION DEVELOPMENT
Used for your Projects

49

TEXTBOOK

Additional “recommended” books as resources in syllabus

“Nested Model”

Tamara
Munzner

Example

FAA (aviation)

What is the busiest time
of day at Logan

Airport?

Map vs. Scatter Plot vs.
Bar

http://www.urban.org/author/jonathan-schwabish

52

Nested Model

53

Threats to Validity Final Project validation

✓

✓

✓

✓

Final
project
follow-up

PROJECTS
(Using the nested model via design study “lite” methodology)

https://neu-ds-4200-s22.github.io/projects/overview

54

https://neu-ds-4200-s22.github.io/projects/overview

For Next Time
neu-ds-4200-s22.github.io/schedule

Look at the upcoming assignments and deadlines

• Textbook, Readings, & Reading Quizzes—Variable days
• In-Class Activities—If due, they are due 11:59pm the

same day as class

Everyday Required Supplies:
• 5+ colors of pen/pencil
• White paper
• Laptop and charger

Use Canvas Discussions for general questions, email
codydunne-and-tas@ccs.neu.edu for questions specific to
you.

https://neu-ds-4200-s22.github.io/schedule/
mailto:codydunne-and-tas@ccs.neu.edu

