Cody Dunne

Northeastern University

Color, Pop-out, Illusions

Goals for Today: Learn How...

- ...to find visual idioms and ideas for inspiration.
- ...to effectively use color as a channel for visual encodings including different colormap types.
- ...we process color in the visual system.
- ...individual color differences (i.e., colorblindness) should be accommodated in visualizations.
- ...interactions can occur between colors and with lighting.
- ...illusions and tricks can affect perception.

Visualization Ideas

Borkin, M., Vo, A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., \& Pfister, H., 2013 "What Makes a Visualization Memorable?", IEEE Transactions on Visualization and Computer Graphics (Proceedings of InfoVis 2013), 19, 12, 2306-2315.

More visualization "catalogs"

More visualization "catalogs"

DataVizProject http://datavizproject.com/

Sankey Diagram

Alluvial Diagram

Donut Chart

Matrix Diagram

$$
\begin{array}{|c|c|c|c|}
\cline { 2 - 4 } & 1 & \mathbf{2} & 3 \\
\hline \text { A } & \bullet & & \bullet \\
\hline \mathbf{B} & & 0 & \bullet \\
\hline \mathbf{C} & 0 & & \\
\hline
\end{array}
$$

Pictorial fraction chart

Matrix Diagram (Roof Shaped)

Sorted Stream Graph

Flow Map

The Data Visualization Catalogue
http://www.datavizcatalogue.com/

More visualization ideas

matpltlib

Color

Visual Perception and Cognition

Pre-Attentive Processing

- Automatic
- Lasts < 1 second

Working Memory / Short-Term Memory
 - Conscious
 - Limited (information retained for seconds)

Height of students

Long-Term Memory

- Storage of repeated working memory tasks
- Can be consciously retrieved

Color = Wavelength

Wavelength \rightarrow Signals

Rods \& Cones

Variable Activation

Wavelength (nm)

This is why darkness (lightness) is an effective encoding channel!

Rods:120 million
Cones: 5-6 million

Cones: $\begin{aligned} & \text { This is why we are so } \\ & \text { sensitive to red! }\end{aligned}$
64\% red-sensitive 32\% green-sensitive 2\% blue-sensitive.

Modeling Color with RGB

Modeling Color with RGB

Modeling Color with RGB: Problematic

Color Vocabulary and Perceptual Ordering

Darkness (Lightness)

 \square \square

 Saturation $\square \square \square \square \square$ Hue

Modeling Color with HSL or HSV

HSL

C. $L=1 / 2 d$
d. $H=0^{\circ} / 180^{\circ}$

Still Imperfect

"...avoiding catastrophe becomes the first principle in bringing color to information: above all, do no harm." -Edward Tufte

Color Maps

Color Map = map between value (domain) and color (range)

Three Main Types:

Color Maps

Categorical Does not imply magnitude differences

Race or ethnicity Hispanic White Black Asian

Sequential
People per sq. mile 300.00 to 9316.0 79.6 to 299.9 79.6 to 299.9
7.0 to 79.5 1.1 to 6.9

Diverging
Percent of population under 18 by state 28.0 to 32.2 - 25.7 to 27.9 Critical Value - Nat'1 Avg. $\square 24.0$ to 25.6 20.1 to 23.9 (categorical/nominal data)

Distinct hues with similar emphasis
Best for ordered data that progresses from low to high (ordinal, quantitative data)

Darkness (lightness) channel effectively employed
For data with a "diverging" (mid) point (quantitative data)
Equal emphasis on mid-range critical values and extremes at both ends of the data range

Color Maps

ALSO...

Bivariate
Displays two variables
Combination of two sequential color schemes
These are very difficult to design effectively, make intelligible, and be color blind friendly.

Types of Color Maps

Diverging

Categorical

Pastel1
Fastel2

Sen \square

[riman la
Cyclical
Rainbow
Sinebow

Darkness (Lightness) Channel

- No edges without darkness difference
- No shading without darkness variation
- Has higher spatial sensitivity than color channels
- Contrast defines legibility, attention, layering
- Controlling darkness is primary rule of design

"Get it right in black and white."

-Maureen Stone

Understanding your medium matters

mecoming music themes were rock

Figure 8: Maximum wave amplitudes for the Japan 2011 tsunami. Amplitudes were clipped at 99 cm . Data adapted from NOAA; http://www.noaa.gov/.

FatFonts

Rainbow Color Map (Hue)

Rainbow Color Map
(a)
(b)

Rainbow Color Map

- No darkness variation (obscures details)
- Viewers perceive sharp transitions in color as sharp transitions in the data, even when this is not the case (misleading)

Rainbow Color Map (Hue)

No perceptual ordering (confusing)

(a)

Rainbow Color Map

Rainbow:
3D: 39\%
2D: 62\%

How many diseased regions found?

Diverging:
3D: 71\% ($\Delta+31 \%$)
2D: 91\% ($\Delta+29 \%)$

"Get it right in black and white."

"Get it right in black and white."

How Much Warmer Was Your City in 2016?
by K.K. rebecca lat Jan. 18, 2017
Last year is the hottest year on record for the third consecutive year
In a database of more than 5,000 cities provided by AccuWeather,
normal. Enter your city below to see how much warmer (or cooler) it was.

Temperature Average: $53.4^{\circ} \triangle \mathbf{1 . 9}{ }^{\circ}$ above normal | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- |

"Get it right in black and white."

How Much Warmer Was Your City in 2016?
by K.k rebecca lai Jan 18, 2017
Last year is the hottest year on record for the third consecutive year
about 90 percent recorded annual mean temperatures higher than
normal. Enter your city below to see how much warmer (or cooler) it was.
Boston, Mass.
Temperature Average: $53.4^{\circ} \triangle 1.9^{\circ}$ above normal

Temperature Average: 53.4°
$\qquad \circ^{\circ}{ }^{\circ} \mathrm{C}$

"Get it right in black and white."

Estimated Heat Accumulation

"Get it right in black and white."

Estimated Heat Accumulation

Rainbow Color Map (Hue)

Why this color map is a poor choice for quantitative data...

- No perceptual ordering (confusing)
- No darkness variation (obscures details)
- Viewers perceive sharp transitions in color as sharp transitions in the data, even when this is not the case (misleading)

Color Maps

Color Maps

Color Maps

Sequential (possibly wrong)
Diverging

Roos, 2015

In-CLASS EXERCISE

In-class exercise: Oilslick

 10 m
INSTRUCTIONS:

- Working individually, go to https://mrgris.com/projects/oilslick/
- Experiment with the different layers, different zoom levels, and different locations

- Think of answers to these questions:

What areas are particularly interesting?
Which layer / color scale works best, and for which tasks?

- Several of you will be asked to share your findings.

Those with deuteranope color blindness (red/green) will have difficulty seeing the numbers.

Color Deficiencies (Color Blindness)

Person with faulty cones (or faulty pathways):
Protanope = faulty red cones

Deuteranope = faulty green cones

normal

Tritanope = faulty blue cones

Color Deficiencies (Color Blindness)

Normal

Protanope

Deuteranope

Check your images/colormaps for issues!

Vischeck

Home	
Vischeck	Try Vischeck on Your Image Files
-Run Images -Run Webpages	Select the type of color vision to simulate:
Daltonize	
Examples $\quad 1 \mathrm{ll}$ O Deuteranope (a form of red/green color deficit)	
Downloads Protanope (another form of red/green color deficit)	
Info \& Links	
FAQ Sliv Tritanope (a blue/yellow deficit- very	
About Us	
User quotes: Fantastic! Keep up the good work!!! -Zoe N.	Notes:
Web - Vischeck Google Search	- Vischeck accepts most common image formats. However, we recommend that you use PNG or JPEG format for uploading large images as these tend to transfer faster. - For PowerPoint slides, you can save all your slides as PNG images with "Save As..." and run Vischeck on each slide. - If you have many images to process, consider downloading Vischeck to run on your own computer.) - Uploading a large file may take a while - please be patient!
	Please read our terms of use before using Vischeck.

Coblis -
Color Blindness Simulator
you are not suffering from a color vision deficiency it is very hard to imagine how it toi If you are not suffering from a color vision deficiency it is very hard to o magine how it tlook
like to be colorblind. The Color BLIndness Simulator can close this gap for you. Just play like to be colorblind. The Color BLIndness Simulator can close this gap for yo
around with it and get a feeling of how it is to have a color vision handicap.

As all the calculations are made on your local machine, no images are uploaded to the server. Therefore you can use images as big as you like, there are no restrictions. Be awa there are some issues for the "Lens feature" on Edge and Internet Explorer. All others should support everything just fine.

So go ahead, choose an image through the upload functionality or just drag and drop your
image in the center of our Color BLIndness Simulator. It is also possible to zoom and move your images around using your mouse - try it out, I hope you like it.

Drag and drop or paste your file in the area below or: Browse... No file selected. FREE Color Blind
 and test type and
severity of your color severity of your cy

Interactions between Colors AND WITH LIGHTING

"Lightness Constancy"

The perception that the apparent brightness of light and dark surfaces remains more or less the same under different luminance conditions is called darkness (lightness) constancy.

This is the same gray as the top part of the S in GLoves
"Darkness (lightness) Constancy"

"Color

Constancy"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

"Simultaneous Contrast"

Be careful with bars and scatter plot points - the colors may appear differently with different background colors and neighboring colors!

Be aware that colors in legends may appear different than on the plot!

"Simultaneous Contrast"

"von Bezold Spreading Effect"

"von Bezold Spreading Effect"

[^0]Which area is larger (green or red)?

Which area is larger?

Areas are equal(!).
Study participants favored red in the highly saturated case (left) but were more correct with the desaturated case (right)

Pop-Out Effects

Color

A quarterback sneak is a play in American football and Canadian football in which the quarterback, upon taking the center snap, dives ahead while the offensive line surges forward. It is usually only used in very short yardage situations.
https://en.wikipedia.org/wiki/Quarterback sn eak

Which pop-out effects are used in this example visualization?

The Patriots' QB sneaks stand out

QB sneak success rate versus number of attempts on 1 - and 2-yard plays on third and fourth down, 2001-15

Desaturated background, light blue

Color Mixing Pitfalls

Fig. 12: Illustrative visualizations of a six-dimensional dataset using illustrative parallel coordinates. (a) Ideal visualization with appropriate weightings and color choices, and the use of the local model in overlapping areas. (b) Improper weightings are employed. The blue cluster no longer seems to be in front. (c) The use of improper weightings and the disabling of the local model results in a confusing visualization.
"Aimed at reducing false colors in the overlap regions. ...[Reduce] saturation of the color in the rear object only in the overlap region while keeping its lightness."
Note the swap in blue/red for foreground/background vs. NASA

Tools for Picking Colormaps

Color Brewer

http://colorbrewer2.org

Colorgorical

Other Useful Tools

- Get a list of colors from an image: https://html-color.codes/color-from-image
- Analyze your palette: https://projects.susielu.com/viz-palette
- Analyze the name similarity of colors in your palette:
http://vis.stanford.edu/color-names/analyzer/
- Details on multi-hued color scales:
https://www.vis4.net/blog/2013/09/mastering-multi-hued-color-scales/\#combining-bezier-interpolation-and-lightness-correction
- Easy picking a multi-hued color scale: http://tristen.ca/hcl-picker/
- Easily correcting darkness (lightness) for a scale: http://gka.github.io/palettes/
- Do a ton programmatically: https://gka.github.io/chroma.js/
- virdis colors:
https://cran.r-project.org/web/packages/viridis/vignettes/intro-toviridis.html

Color Advice Summary

Use a limited hue palette

- Control color "pop out" with low-saturation colors
- Avoid clutter from too many competing colors

Use neutral backgrounds

- Control impact of color
- Minimize simultaneous contrast

Use Color Brewer etc. for picking scales
Don't forget aesthetics!

For Next Time

neu-ds-4200-s22.github.io/schedule
Look at the upcoming assignments and deadlines

- Textbook, Readings, \& Reading Quizzes—Variable days
- In-Class Activities-If due, they are due 11:59pm the same day as class

Everyday Required Supplies:

- 5+ colors of pen/pencil
- White paper
- Laptop and charger

Use Canvas Discussions for general questions, email codydunne-and-tas@ccs.neu.edu for questions specific to you.

Week	Topics	Assignments
\#1: Jan 17-21	What is visualization Design rules of thumb	A1-Setting up
\#2: Jan 24-28	JS development, projects Marks \& channels	A2-Encodings \& xenographics
\#3: Jan 31-Feb 04	Data types and tasks, Tableau D3 tutorial 1/2	P1-Pitches*
\#4: Feb 07-11	In-class group formation D3 tutorial 2/2	A3-Tableau analysis P2—Proposal \star
\#5: Feb 14-18	Altair and JupyterLab Arrange tables	A4-D3 basic charts
\#6: Feb 21-25	Color Pop-out, illusions	A5-Altair basic charts P3-Interview \& tasks
\#7: Feb 28-Mar 04	Interaction \& animation (2)	A6-D3 event handling P4-Data, Initial sketches
\#8: Mar 07-11	Trees \& networks (2)	P5-Final sketches \& planᄎ
Mar 14-18	Spring Break	
\#9: Mar 21-25	Project feedback \& work Spatial, 3D, and scientific vis.	A7-D3 Brushing \& linking 1 P6-Implementation 1
\#10: Mar 28-Apr 01	Validation \& evaluation Flex day	A8-Brushing \& linking 2 P7-Implementation 2
\#11: Apr 04-08	Project usability testing, how to give a talk Storytelling	
\#12: Apr 11-15	Project presentations $1 / 2$ Project presentations $2 / 2$	P8-Presentations $\star \mathbf{Y}$
\#13: Apr 18-22	Flex day	P9-Presentation peer review
\#14: Apr 25-29	Reflecting \& project work	
May 02-06		P10-Video \& Final Deliverables $\boldsymbol{\text { ® }}$ I

[^0]: Be careful with colors in scatter plots!
 Be aware of color changes when adding borders around bars and plots!
 Be aware that colors in legends may appear different than on the plot!

